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 Abstract—This paper presents a predicted path loss model based 

on path profile in suburban Vehicle-to-Infrastructure 

propagation environments for 433MHz Sub-GHz band. Effecting 

of path profile parameters (Received Signal Strength, 

Transmitter - Receiver antenna heights, Transmitter - Receiver 

separating distance, Spreading Factor, Bandwidth, and coding 

rate) on link quality is considered as a crucial matter to maintain 

link availability at maximum path loss. The proposed model is 

based on the log-distance path loss model for line-of-sight 

propagation scenario. The path loss model is constructed based 

on the polynomial regression approach. Additionally this paper 

uses the principal of weighted product model to estimate the 

optimal path profile parameters which provide an optimum path 

loss. Through these advancements, this research aims to enhance 

the robustness of Vehicle to Infrastructure communication 

systems in suburban settings. This work is then compared with 

recent studies based on the criteria which consider the chosen 

environment, utilized wireless technology, operating frequency, 

transmission power, and path loss modeling analysis methods. 

 

Index Terms— Path loss modeling; long-range wireless 

technology; vehicle to infrastructure; suburban; optimization 

I. INTRODUCTION 

he Internet of Things (IoT) characterizes a network 

that relates different applications and devices via the 

internet. This includes products such as cellphones, 

personal computers, household equipment, vehicles, and 

numerous of other devices. Each application or device has a 

singular identifier and can interact with other devices in the 

same network [1]. The Internet of Vehicles (IoV) is a special 

case of IoT, as depicted in Fig.1. 

IoV involves integrating the internet into vehicles, enabling 

communication between vehicles and roadside infrastructure. 

This technology can enhance safety, leverage traffic flow, and 

provide drivers with assistance and information. IoV also 

helps the progress of autonomous vehicles and designing 

smart cities and transportation system. Some of IoV 

utilizations are collision avoidance, traffic congestion alert [2]. 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. IoV communications [3] 

The Long Range Wide Area Network (LoRaWAN) is one 

of the structural templates for simplifying IoV 

communications, which uses Long Range (LoRa) modulation 

[4]. LoRa is the physical layer in LoRaWAN and was 

discovered by Semtech Corporation [5, 6]. Designing a 

wireless network covers the identification of the maximum 

distance between network nodes that guarantees a credible 

wireless connection [7]. Many technical coefficients 

(transmitter (Tx) power, operating frequency, and receiver 

(Rx) sensitivity) can affect the design of a wireless network 

[8].  

With LoRa, the configuration coefficients (Spreading Factor 

(SF), Bandwidth (BW), and Coding Rate (CR)) can affect the 

communication quality of LoRaWAN and propagation 

connectivity. 

Path Loss (PL) models are major in wireless 

communication, as these models predict the performance of 

the transmission connectivity between Tx and Rx in different 

channels. These models are worthy in planning and designing 

of a wireless network [9]. LoRaWAN design relies on PL 

measurements which are relied on predictive propagation 

models that assist radio engineers to enhance networks 

performance through influential design [10]. 

This paper discusses outdoor medium to define the optimal 

path profile coefficients, such as; Received Signal Strength 

Indicator (RSSI), which is a measurement of the power level 

T 
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that a radio receiver is experiencing from a signal being 

received, Tx-Rx antenna heights, Tx-Rx separation distance, 

SF, BW, and CR; for a Vehicle-to-Infrastructure (V2I) 

LoRaWAN system that operates at 433MHz. The aim is to 

assign the maximum PL at which the best possible 

connectivity is still maintained between a vehicle and 

infrastructure. 

II. RELATED WORKS 

Many studies have scouted about the relation between Tx 

and Rx performance in various mediums and conditions, using 

different wireless technologies to communicate via 

propagation modeling. Developing a precise propagation 

model to classify propagation losses is a critical issue that 

improves the accuracy of PL predictions at network designing 

[11]. LoRa is a wireless technology that is utilized for 

LoRaWAN design in IoT field. The setting coefficients of 

LoRa are defined based the used application. These 

coefficients affect PL prediction and affect the PL modeling 

that depends on experimental measurements that rely on the 

Path Loss Exponent (PLE). Thus, LoRa coefficients influence 

the quality and performance of the connection based on their 

selected groups. The next studies concentrate on PL modeling 

via different propagation models that impact LoRa technology 

through various frequencies and in several environments. 

In the study accomplished by Karttunen et al. [12], the 

analyzation took place at urban area with operating frequency 

of 28GHz to deduce a weighted and distance-dependent PL 

model. The conducted study by Allen et al. [13] developed a 

set of outdoor-indoor PL models at different operating 

frequencies utilizing Singular Value Decomposition (SVD) 

with Least Mean Square (LMS) Error. In the implemented 

study by Unterhuber et al. [14], many PL propagation models 

were examined at 5.2GHz for Train-to-Train (T2T) 

environment PL modeling pursued for monitoring by 

simplifying information interchange to precisely define the 

location and speed of trains in country, suburban, and subway 

mediums. In the study by Bertoldo et al. [15], the assessment 

of indoor propagation revealed that Keenan's model is the 

most suitable choice for designing an office radio link based 

on LoRa operating at a frequency of 868 MHz. In Ingabire et 

al.’s study [16], outdoor propagation investigation was 

performed on four propagation models with an operating 

frequency 868MHz in an urban IoT environment with 

LoRaWAN technology. Two estimation results were obtained; 

COST-231 Hata and Okumura Hata models both 

underestimate the RSS while Extended Hata and ITU R 1225 

models both over-estimate the RSS.  In the research conducted 

by Zakaria et al. [17], two regions—urban and suburban—

were analyzed for PL propagation modeling at an operating 

frequency of 3.5 GHz, resulting in the extraction of two PLEs 

for each area.  

The subsequent studies focus on PL evaluation based on 

LoRa configurations at various operating frequencies, each set 

within different parameter environments, and analyze different 

methods. 

 

In the studies conducted by Wu et al., Callebaut et al., and 

Lin et al. [18-20], PL evaluation of a LoRa link was examined 

in an outdoor environment at operating frequencies of 433 

MHz and 868 MHz, with transmitting powers of 0 dBm, 13 

dBm, and 20 dBm, respectively. This analysis aimed to 

determine the maximum PL constrained by the LoRa Rx 

sensitivity based on the derived PL model. In the study by 

Callebaut et al. [19], PL evaluation was conducted on point-to-

point LoRa connections employing low-height terminals. This 

resulted in increased PL and a higher number of lost packets 

due to lower received signal strength (RSS), in contrast to a 

typical star topology network featuring a base station 

positioned at a greater elevation. In the conducted survey by 

Kongsavat et al. [9], a smart meter evolved with LoRaWAN to 

work at 920 and 925MHz frequencies with a transmitting 

power of 12dBm. Authors represented a PL model for urban 

regions, utilizing Root Mean Square Error (RMSE) to estimate 

and contrast their model with typical propagation models. The 

outcomes marked that the error of the estimated model was 

less than that in the Okumura-Hata model. In the study by Lin 

et al. [21], an underground LoRa based on wireless channel is 

modeled; researchers was found that maximizing BW led to 

minimized sensitivity, which passively affected the quality of 

the received signal, as the Data Rate (DR) increased with the 

maximized BW. On the contrary, maximizing SF led to 

minimize the DR while improving link quality, enhancing 

communication accuracy, and expanding propagation distance. 

In the study by Akram et al. [22], the Time on Air (ToA) was 

discussed based on divergences in SF and BW coefficients. 

Researchers found that ToA maximized as SF is raised; 

however ToA minimized with an increase in BW. In the study 

by Anzum et al. [23], LoRa propagation was examined 

meanwhile experimental measurements took manner at a 

frequency of 433MHz in a palm oil plantation. Line-of-Sight 

(LoS) measurements were used to calculate the PLE; with 

different SFs demonstrating unique propagation characteristics 

that significantly influenced the PLE. Researchers were found 

that the PLE varies based on both BW and SF. Additionally; 

an increase in BW resulted in a reduction in both 

communication range and sensitivity. Juang, R.T [24], 

proposes a machine learning-based PL model for 5G networks 

in urban environments. The model utilizes building profile 

data along the propagation path. Key steps include feature 

selection, PCA-based feature extraction, and polynomial 

regression for PL prediction. Simulation and real-world results 

demonstrate the proposed model outperforms conventional 

approaches, reducing prediction error by over 20%. Aramice, 

G.A. et al. [25], present a vehicle black box system that 

enhances safety and accurately records traffic fines using a 

vehicular sensor network within the IoV framework and 

433MHz Long Range technology. The system features gas and 

flame sensors for security and a GPS module for location 

verification with timestamps to dispute fines. The system 

employs Vehicle-to-Vehicle (V2V) and V2I communication, 

evaluating signal strength via RSSI values. By utilizing LoRa 

technology instead of GSM or Bluetooth, the authors tackle 

cost and coverage issues from earlier studies. 
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III. LONG RANGE TECHNOLOGY 

LoRa wireless technology enables data transmission over 

distances of 5 to 15 km using Chirp Spread Spectrum 

modulation with a (SF) of 7 to 12 and data rates from 30 bps 

to 50 kbps. LoRa features high robustness, multipath 

resistance, immunity to the Doppler Effect, and low power 

consumption. LoRa transceivers operate in ISM frequency 

bands of 868 MHz and 433 MHz. The effectiveness of LoRa 

is affected by physical factors: SF, BW, and CR. These 

parameters impact bit rate and LoRa noise resistance. But in 

general, five configuration parameters were selected in LoRa 

radio to determine communication link performance when 

designing LoRaWAN at suburban sites; these tunable 

parameters are Transmission Power (TP), Frequency (f), SF, 

BW, and CR [26-28]. 

The SF is the ratio of the symbol rate to the chip rate. Each 

SF represents an orthogonal channel for separate transmission 

in a LoRaWAN network. The value 2SF indicates the number 

of chips per symbol and increases with SF [29]. While higher 

SF improves packet duration, SNR, distance, and RX 

sensitivity, data rate is reduced, resulting in slower 

information transfer. SF is adjustable: higher SFs are used for 

weak signals, while lower SFs are preferred for strong signals, 

affecting transmission speed. Increasing SF expands the range 

[1, 19, 30, and 31]. 

IV. PATH LOSS MODELS 

The characteristics of a radio communication channel 

encompass the operating frequency, the types of antennas 

employed, and the characteristics of the propagation 

environment. To effectively analyze a communication 

channel, considering radio signal propagation is essential [32]. 

The usage of PL models is to estimate a reduction in RSS, and 

these models vary based on the medium (free space, suburban, 

and urban) specifications. Moreover, features like the 

characteristics of the medium, the Tx-Rx separating distance, 

and the antenna heights of Tx-Rx also affect PL [20]. 

The free space model represented in Eq. (1) is utilized to 

describe the decreasing in RSS along the direct path [33]: 

𝑃𝐿(𝑑) = 20 log10 𝑑 + 20 log10 𝑓 + 20 log10(
4𝜋

𝑐
) (1) 

Where (d) acts the Tx-Rx separating distance, (f) acts the 

operating frequency and (c) acts speed of light. 

The log-distance PL model is the most repeatedly used 

model for both (suburban and urban) regions. This model is 

distance (d) and PLE (n) dependent model, and is given in Eq. 

(2) [34]: 

𝑃𝐿(𝑑) = 𝑃𝐿(𝑑0) + 10𝑛 log10 (𝑑
𝑑0

⁄ )  (2) 

Where (d0) represents the reference distance from the Tx 

and (d >d0), PL(d0) represents the reference distance PL, the 

PLE (n) value describes the PL variation rate as (d) increased. 

The presence of buildings and trees as obstacles along the 

path between the Tx and the Rx leads to log-normal fading or 

shadowing. These obstacles absorb a portion of the transmitted 

power, which affects the RSS [35]. The log-normal shadowing 

PL model expressed as [20]: 

𝑃𝐿(𝑑) = 𝑃𝐿(𝑑0) + 10𝑛 log10 (𝑑
𝑑0

⁄ )  + 𝑋𝜎   (3) 

Where (𝑋𝜎) is a Gaussian random variable with a mean of 

zero and a standard deviation of 𝜎 in dB, as 𝜎 increases, the 

model is regarded as less reliable [20]. The received power 

Pr(d) at a distance (d) and transmitted power (Pt) is equal to: 

𝑃𝑟(𝑑) = 𝑃𝑡 − 𝑃𝐿(𝑑)    (4) 

However, since the log-distance PL model shows that the 

received power decreases logarithmically with increasing 

distance (d), the average received power at distance (d), 

denoted as  𝑃𝑟(𝑑), can be expressed as follows [35]: 

𝑃𝑟(𝑑) = 𝑃𝑟(𝑑0) − 10𝑛 log10 (𝑑
𝑑0

⁄ )   (5) 

Pr(d0), represents the received power at reference distance 

(d0), and considered as the RSSI at certain distance (d0) [20], 

and then Eq. (6) is obtained: 

𝑅𝑆𝑆𝐼(𝑑) = 𝑅𝑆𝑆𝐼(𝑑0) − 10𝑛 log10 (𝑑
𝑑0

⁄ ) + 𝑋𝜎  (6) 

Where (Xσ) equals zero at no fading. 

V. PATH LOSS MODEL EXTRACTION 

In a wireless communication system, the PLE is a parameter 

that reflects how quickly the signal strength diminishes with 

increasing distance. Accurate determination of the PLE (n) is 

critical, serving as a key factor in designing radio signal 

propagation for wireless communication systems and can help 

predict the accuracy of radio propagation behavior [11]. 

The PLE is usually specified via empirical measurements of 

RSSI at different distances, followed by adequate a model the 

gathered data. With LoRaWAN, many parameters affect PLE, 

such as, operating frequency, surrounding medium, and used 

antenna type. One of the parameters affecting PLE is signal 

BW. LoRaWAN utilizes spread spectrum modulation, which 

spreads data over a large frequency range. The obtainable 

BWs in LoRaWAN ranges between 125 kHz to 500 kHz, and 

the specific value of PLE may differ depending on the used 

BW. In general, PL increases as BW minimizes, as a narrower 

BW focuses signal power to a smaller frequency band, making 

BW more susceptible to interference and absorption by objects 

like buildings and trees.  

Crucially, PLE is extremely dependent on the operating 

environment. For illustration, in urban regions, PLE is higher 

than in rural regions due to the large number of objects that 

absorb or scatter the signal strength. Moreover, LoRa is 

designed to implement dynamically in mediums with a large 

PLE and considerable PL, providing long-range connectivity. 
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In addition, since PLE is determined empirically, variation 

may occur across different scenarios, locations and mediums. 

PLE differs based on the specific medium and is affected by 

parameters such as signal frequency, antenna type, and the 

presence of objects. Table 1 presents PLE values for different 

mediums.  

TABLE 1 

PLE RANGES FOR VARIOUS MEDIUMS [35] 

Medium PLE Limits 

Free space 2.0 

Urban 3.0 to 4.0 

Suburban 2.5 to 3.5 

Indoor 1.6 to 2.7 

Rural 2.0 to 3.0 

 

PLE (n) for single reading sample presented as [36]: 

𝑛 =
𝑅𝑆𝑆𝐼(𝑑0)−𝑅𝑆𝑆𝐼(𝑑)

10 𝑙𝑜𝑔10(𝑑
𝑑0

⁄ )
                           (7) 

For (N) locations, the PLE can be calculated using the Least 

Mean Square (LMS) error method to reduce the discrepancy 

between the measured RSSI(d) at distance (d) and the 

calculated RSSI(d) using the following formula [17]: 

F(n) = ∑ (RSSIi(di) − RSSI(d0) − 10n log10 (
di

d0
⁄ ))

2
N
i=1        (8) 

Where RSSIi represents the measured RSSI in i-th sample at 

di distance. The standard deviation (σ) serves as an effective 

indicator of the shadow fading parameter and is expressed as 

[14]: 

σ = √∑ (measured RSSI−calculated RSSI)2N
i=1

N
  (9) 

The calculated (n) used to extract the PL model used to 

describe the environment under study. 

After obtaining (n) and (σ), Eq. 6 used to get PL model of 

the form: 

𝑃𝐿(𝑑) = (𝛼 + σ) − 𝛽 log10(𝑑)   (10) 

Where: 

𝛼 =  RSSI(d0) + log10(d0)    (11) 

𝛽 = 10n     (12) 

σ = {
0     at no shadowing effect
> 0     at shadowing effect

   (13) 

Once the PL mathematically calculated, the optimization 

can be characterized. 

VI. RSSI MEASURING SCENARIO 

Measurements were taken from a drive test at a selected 

road site in Baghdad City, which has a width of approximately 

9 meters, with surrounding buildings about 10 meters tall and 

medium-height trees on both sides ranging from 4 to 6 meters, 

Fig.2 shows the site under study. 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Site under Study (Google Earth Image) 
 

In Fig.2, a base station (marked with a red map marker) 

represents the Rx, while 11 locations (marked with blue map 

markers) indicate the distances measured from the base station 

using Google Earth Maps, identified as the positions of the Tx 

(vehicle) during the drive test. Fig. 3 illustrates a schematic of 

the measurements taken at two base station heights of 2.5 m 

and 4 m, with the height of the end node (LoRa vehicle) being 

approximately 1 meter. 

 

 

 

 

 

 

 

 

Fig. 3. Measurements Schematic Scenario based Antenna 

Heights 

The calculations and analyses in this study are conducted 

within the following defined scopes, boundaries, limitations, 

and constraints: 

1. Selecting the LoRa module (SX1278) from Semtech 

Corporation. 

2. Configuring the LoRa module parameters with the 

following values: SF of 7, 9, 10, and 12; BW options of 

125, 250, and 500 kHz; and CR of 4/5 and 4/7. 

3. Setting the transmission output power for the Tx to 17 

dBm. 

4. Installing the Rx antenna at heights of 2.5 and 4 meters. 

5. Using a LoRa frequency modulation of 433MHz. 

6. Selecting a suburban site in Baghdad City. 

VII. EVALUATION METRICS 

A. Distance Correlation 

The RSSI values, measured through a drive test using the 

Semtech SX1278 LoRa module, are regarded as actual 

measurements and can be employed to estimate the distance 

between the Tx and Rx as follows: 

From Eq. (6), the Tx-Rx distance estimation formula is 

obtained as: 

4 m 
2.5 m 

BS (Rx) 
EN (Tx) 

1 m 

d(m) 
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𝑑 = 𝑑010
−[

𝑅𝑆𝑆𝐼(𝑑)−𝑅𝑆𝑆𝐼(𝑑0)+𝑋𝜎
10𝑛

] 
(14) 

The error between the measured distance and the actual 

distance between the Tx and Rx is determined using: 

𝑒𝑖 = 𝑑𝑟 − 𝑑𝑚 (15) 

Where, (𝑒𝑖) represents the distance measurement error, (𝑑𝑟) 

is the real distance between Tx-Rx nodes, and (𝑑𝑚) is the 

measured distance (d) in Eq. (14). 

A correlation is required between Tx-Rx (measured and 

estimated) distances [37]: 

𝑅2 = 1 −
∑ (𝑑𝑟𝑖

− 𝑑�̂�𝑖
)

2𝑛
𝑖=1

∑ (𝑑𝑟𝑖
− 𝑑𝑟

̅̅ ̅
𝑖
)

2𝑛
𝑖=1

 (16) 

The best correlation coefficients are (𝑅2=0.8232) and 

(𝑅2=0.8760) at {SF(12), BW(250kHz), Rx antenna height of 

(h=2.5m)} and {SF(7), BW(125kHz), Rx antenna height of 

(h=4m)} respectively, as shown in Fig.4(a) and Fig.4(b): 
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(b) 

Fig. 4. Distance Correlation at: 

(a) {SF(12), BW(250kHz), Rx antenna height of (h=2.5m)} 

(b) {SF(7), BW(125kHz), Rx antenna height of (h=4m)} 

B. Path Loss optimization 

The Weighted Product Model (WPM) is a Multi-Criteria 

Decision-Making (MCDM) method used for optimization, and 

is widely recognized as a standard numerical analysis 

technique for decision-making [38]. The goal is to identify the 

policy (APL) that maximizes the accumulated PL. This policy 

is characterized by the set {SF, BW, CR}, representing the 

configuration combinations used for the LoRa module during 

transmission.  

Eq. (17) formally defines this maximization of (APL) [39]: 

𝑚𝑎𝑥 (𝐴𝑃𝐿{𝑆𝐹, 𝐵𝑊, 𝐶𝑅}) = ∏ 𝑃𝐿(𝑑𝑖)
𝜔𝑖8

𝑖=1                      (17) 

Table 2 briefs the symbols in Eq. (17): 

 

TABLE 2 

MAXIMIZATION POLICY SYMBOLS 

Symbol Representation 

APL Accumulative PL value at 𝑖 distance in meters, 

𝑖 = 20, 30, 50, 80, 100, 150, 215 𝑎𝑛𝑑 250 

ω weighting vector, 

𝜔 = 0.35, 0.2, 0.2, 0.1, 0.05, 0.05, 0.03, 0.02 

SF the selected spreading factor values, 𝑆𝐹 =
[7, 9, 10, 12] 

BW the selected bandwidth values in kHz, 𝐵𝑊 =
[125, 250, 500] 

CR the selected code rate values, 𝐶𝑅 = [4/5, 4/7] 

 

The set configuration {SF, BW, and CR} has 24 possible 

combinations. Each of these combinations results in different 

values of RSSI measured during drive tests. The different 

RSSI values then lead to the calculation of different PL values 

for each combination set at each distance being considered. 

The goal is to determine the maximum PL value at which a 

reliable link can still be maintained, according to the 

established policy. Fig. 5 illustrates the optimal PL values for 

specific {SF, BW, CR} set at various distances and two 

heights of Rx antenna. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Optimum Path Loss 
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VIII. COMPARISON 

This work is compared to recent works according to the 

criteria shown in Table 3. The criteria in the table consider 

chosen environment, utilized wireless technology, operating 

frequency, transmission power, and PL modeling analysis 

methods). 

TABLE 3 

CRITERIA COMPARISON WITH OTHER RELATED WORKS 

[Ref.] 

year 

Environment/Wireless 

Technology 

Operating 

Frequency 

(MHz) / Pt 

(dBm) 

𝐏𝐋 

Modeling 

Analysis 

Methods 

[18] 

2017 

Outdoor/Radio 

Frequency 

433 and 868 / 

(0, 13, 20) 
RMSE 

[9]   

2020 
Urban/LoRa 

920 and 925 / 

12 
RMSE 

[16] 

2020 
Outdoor/LoRa 

868 / not 

mentioned 

Mean 

Absolute 

Error 

[23] 

2022 
Outdoor/LoRa 

433 / not 

mentioned 
RMSE 

This 

work 

Outdoor 

(suburban)/LoRa 
433 WPM 

IX. DISCUSSION 

Based on the results and discussions presented earlier, the 

following observations can be made: 

1. Improper placement of the Rx can lead to a significant 

increase in path loss. 

2. Rx antenna height may effect in PL minimization. 

3. Propagation models form the foundation of channel 

modeling, to describe how a radio signal changes during its 

propagation from the Tx to the Rx. 

4. As the separation distance between the Tx and Rx increases, 

the path loss also rises. 

5. Path loss tends to increase more rapidly at greater distances 

in civilian/urban areas compared to other environments. 

6. The measurement data presented can be valuable for 

researchers in the context of site planning and link budget 

analysis for telecommunication system deployments. 

X. CONCLUSION 

This paper presents a generalized PL model tailored for 

suburban environments, based on empirical propagation 

modeling and actual drive test RSSI measurements. The 

design of a LoRaWAN-based Internet of Vehicles (IoV) 

system was assessed in terms of PL measurements. The 

influence of LoRa parameters—specifically SF, BW, and 

CR—on link performance was evaluated by estimating 

coverage range and PL using PLE calculations. An optimal 

policy was proposed to maximize PL, showing that the 

optimal PL was achieved with LoRaWAN parameters of SF = 

7, BW = 125 kHz, and CR = 4/7, based on the measured 

RSSIs and predicted PL model at two Rx antenna heights 

(2.5m and 4m). The best distance estimation for a Rx antenna 

height of 2.5 meters is obtained using a SF of 12 and a BW of 

250 kHz, with a 𝑅2 of (0.8232), for an Rx antenna height of 4 

meters, the best distance estimation is obtained using an SF of 

7 and a BW of 125 kHz, with a 𝑅2 of (0.8760). 

 Future work may explore different antenna heights and their 

impact on link performance within this PL modeling 

framework, comparing results with other propagation models 

such as the Okumura-Hata model. Additionally, other 

locations, including urban sites, could be incorporated into this 

study, and the influence of vehicle speed may also be analyzed 

in future research. 
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